

10.º ANO | MATEMÁTICA A

RESUMOS FUNÇÒES

FUNÇÕES

Generalidades acerca de funções

- Uma função pode ser representada de diversas formas: diagramas, tabelas, gráficos e expressões analíticas.
- Dados os conjuntos A e B, fica definida uma função f de A para B quando a cada elemento x, do conjunto A, se associa um e um só elemento y do conjunto B que se representa, normalmente, por f(x), ou seja, y = f(x).

A função f designa-se por $f: A \rightarrow B$.

- Domínio de uma função $f: A \to B$ é o conjunto dos elementos de A. Representa-se por D_f .
- Contradomínio de uma função $f:A\to B$ é o conjunto dos elementos de B que estão associados por elementos de A. Representa-se por D_f' .
- O conjunto de chegada de uma função $f:A\to B$ é o conjunto dos elementos de B.
- Os elementos do domínio designam-se por <u>objetos</u>.
- Os elementos do contradomínio designam-se por <u>imagens</u>.
- Dada a função $f:A\to B$ tal que $x\in A$ e $y=f(x)\in B$, a <u>varíavel independente</u> é x e a varíavel dependente é y.

Zeros e sinal de uma função

- Sendo a ∈ D_f, a é zero da função f se e só se f(a) = 0.
 Graficamente os zeros da função f são as abcissas dos pontos de interseção do gráfico da função f com o eixo das abcissas (eixo Ox).
- Dada uma função f de domínio D e um subconjunto $A \subseteq D$, tem-se que:
 - -f é p<u>ositiva</u> em A se e só se f(x) > 0, $\forall x \in A$.
 - f é <u>negativa</u> em A se e só se f(x) < 0, $\forall x$ ∈ A.

Extremos de uma função

- Dada uma função f, real de variável real, de domínio D e $a \in D$, f(a) é um:
 - máximo absoluto da função f se $\forall x \in D$, $f(a) \ge f(x)$.
 - <u>mínimo absoluto</u> da função f se $\forall x \in D$, f(a) ≤ f(x).
 - <u>máximo relativo</u> da função f quando existir r > 0, tal que, $\forall x \in D \cap V_r(a)$, f(a) ≥ f(x). a é um maximamente da função f.
 - Nota: $V_r(a) =]a r, a + r[$ designa-se por vizinhança de centro a e raio r.

- <u>mínimo relativo</u> da função f quando existir r > 0, tal que $\forall x \in D \cap V_r(a)$, $f(a) \leq f(x)$. a é minimizante da função f.

Monotonia de uma função

- Os intervalos de monotonia de uma função são os intervalos do domínio dessa função de maior amplitude em que a função é crescente, decrescente ou constante.
- Para organizar o sinal de uma função, pode, construir-se uma tabela de sinal da função.
- Dada uma função f, real de variável real e $A \subseteq D_f$, então:
 - -f é <u>crescente</u> em A se $\forall x_1, x_2 \in A$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
 - -f é decrescente em A se $\forall x_1, x_2 \in A$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
 - -f é <u>decrescente</u> em A se $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2)$
- Para organizar o estudo da monotonia de uma função, pode, construir-se uma tabela de variação da função.

Função afim

Uma função f de domínio \mathbb{R} , diz-se <u>afim</u> se existirem números reais a e b tais que f(x) = ax + b. A representação gráfico de uma função afim é uma reta, não vertical, definida pela expressão y = ax + b, onde:

- *a* é o declive da reta;
- *b* é a ordenada na origem (ordenada do ponto de interseção da reta com o eixo das ordenadas, isto é, o eixo *Oy*).

Se $a \in \mathbb{R} \setminus \{0\}$ e b = 0, então, y = ax e a função diz-se <u>linear</u>. A sua representação é uma reta não vertical, nem horizontal, que passa pela origem do referencial.

Se a=0 e $b\in\mathbb{R}$, então y=b e a função diz-se <u>constante</u>. A sua representação é uma reta horizontal.

Monotonia de uma função afim

Seja f a função afim definida por f(x) = ax + b, com $a \in \mathbb{R} \setminus \{0\}$ e $b \in \mathbb{R}$:

- Se a > 0, então f é crescente em \mathbb{R} .
- Se a < 0, então f é decrescente em \mathbb{R} .

Zeros de uma função afim

Uma função afim não constante tem um e um só zero.

Uma função constante pode não ter qualquer zero ou uma infinidade de zeros.

No caso de y=b, com $b\neq 0$, não existem zeros, já no caso de y=b, com b=0, a função tem uma infinidade de zeros.

Sinal de uma função afim

- Sendo f uma função afim definida por f(x) = b, temos
 - Se b > 0, $\forall x \in D_f$, f(x) > 0.
 - Se b < 0, $\forall x \in D_f$, f(x) < 0.
 - $-\operatorname{Se} b=0, \forall x\in D_f, f(x)=0.$
- No caso de f ser definida por f(x) = ax + b.
 - Se a > 0, para qualquer $x \in \left] -\infty, -\frac{b}{a} \right[$, f(x) < 0.
 - Se a > 0, para qualquer $x \in \left] -\frac{b}{a}, +\infty \right[f(x) > 0$.
 - Se a < 0, para qualquer $x \in \left] -\infty, -\frac{b}{a} \right[f(x) > 0$.
 - Se a < 0, para qualquer $x \in \left] -\frac{b}{a}, +\infty \right[$, f(x) < 0.

Função quadrática

• Função quadrática do tipo $g(x) = ax^2$, com $a \in \mathbb{R} \setminus \{0\}$.

Seja $a \in \mathbb{R}^+$ e a função f definida por $f(x) = x^2$.

O gráfico da função g, tal que $D_g = D_f$ e g(x) = af(x), é a imagem do gráfico de f por uma:

- dilatação vertical de coeficiente a se a > 1
- contração vertical de coeficiente a se 0 < a < 1.

O gráfico da função h, tal que $D_h = D_f$ e h(x) = -af(x) é a imagem do gráfico de f por uma:

- dilatação vertical de coeficiente a se a > 1, seguida de uma reflexão de eixo Ox.
- contração vertical de coeficiente a se 0 < a < 1, seguida de uma reflexão de eixo Ox.

• Função quadrática do tipo $g(x) = a(x - h)^2$, com $a \in \mathbb{R} \setminus \{0\}$ e $h \in \mathbb{R}$.

O gráfico da função g definida por g(x) = f(x-h), com $h \in \mathbb{R}$ obtém-se do gráfico da função f, definida por $f(x) = ax^2$, com $a \in \mathbb{R} \setminus \{0\}$, deslocando este h unidades na horizontal.

- Se h > 0, o gráfico desloca-se h unidades para a direita.
- Se h < 0, o gráfico desloca-se h unidades para a esquerda.
- Função quadrática do tipo $g(x) = ax^2 + k$, com $a \in \mathbb{R} \setminus \{0\}$ e $k \in \mathbb{R}$.

O gráfico da função g definida por g(x) = f(x) + k, com $k \in \mathbb{R}$, obtém-se do gráfico da função f definida por $f(x) = ax^2$, com $a \in \mathbb{R} \setminus \{0\}$, deslocando este k unidades na vertical.

- Se k > 0, o gráfico desloca-se k unidades para cima.
- Se k < 0, o gráfico desloca-se k unidades para baixo.
- Função quadrática do tipo $g(x) = a(x h)^2 + k$, com $a \in \mathbb{R} \setminus \{0\}$ e h, $k \in \mathbb{R}$.

O gráfico da função *g* é uma parábola com as características seguintes:

- Vértice: V(h,k).
- Eixo de simetria: reta de equação x = h.
- Concavidade voltada para cima se a > 0 e voltada para baixo se a < 0.
- Se a > 0:
 - $\ \square \ k$ é o mínimo absoluto da função g sendo h o respetivo minimizante.
 - $\ \ \Box$ o contradomínio da função g é $[k,+\infty[$.
- − Se *a* < 0:
 - $\ \square \ k$ é o máximo absoluto da função g sendo h o respetivo maximizante.
 - □ o contradomínio da função g é] $-\infty$, k].

Equações e inequações do segundo grau

• Fórmula resolvente de uma equação do 2° grau

A equação $ax^2 + bx + c = 0$, com $a \in \setminus \{0\}$ é equivalente a

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

O número de soluções de uma equação do 2° grau depende do sinal do bínomio discriminante, que se representa por Δ e é igual a b^2-4ac .

- Se $\Delta > 0$, a equação tem duas soluções reais distintas.
- Se $\Delta = 0$, a equação tem uma e uma só solução real.
- Se Δ < 0, a equação não tem solução reais.
- Inequações do 2º grau

Para resolver uma inequação do 2° grau pode-se usar o seguinte procedimento:

- 1. Escrever a inequação na forma canónica, isto é, o 1° membro na forma $ax^2 + bx + c$ e o segundo igual a zero.
- 2. Determinar os zeros, caso existam, da equação $ax^2 + bx + c = 0$.
- 3. Efetuar um esboço da parábola que representa graficamente a função $f(x) = ax^2 + bx + c$, atendendo aos zeros, caso existam, e ao sinal de a.
- 4. Concluir o pedido e responder escrevendo o conjunto solução da inequação.

Funções definidas por ramos

Uma função está definida por ramos quando é definida por expressões álgebras diferentes, em partes do domínio diferentes.

Função Módulo

A função f, de domínio \mathbb{R} , definida por

$$f(x) = |x| = \begin{cases} x & \text{se } x \ge 0\\ -x & \text{se } x \le 0 \end{cases}$$

é designada por função módulo.