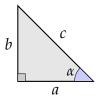


11.º ANO | MATEMÁTICA A

RESUMOS GEOMETRIA

TRIGONOMETRIA

Razões trigonométricas de um ângulo agudo



•
$$\sin \alpha = \frac{b}{c}$$
 • $\cos \alpha = \frac{a}{c}$

•
$$\cos \alpha = \frac{\alpha}{6}$$

•
$$\tan \alpha = \frac{b}{a}$$

Relação entre as razões trigonométricas de ângulos complementares

•
$$\sin \alpha = \cos(90^{\circ} - \alpha)$$

•
$$\sin \alpha = \cos(90^{\circ} - \alpha)$$
 • $\cos \alpha = \sin(90^{\circ} - \alpha)$

•
$$\tan \alpha = \frac{1}{\tan(90^\circ - \alpha)}$$

Razões trigonométricas dos ângulos de amplitude 30°, 45°, 60°

	Graus e Radianos		
α	30°	45°	60°
	$\frac{30^{\circ}}{\frac{\pi}{6}}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sinα	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosα	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tanα	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Fórmulas trigonométricas

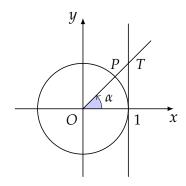
•
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

•
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

•
$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$\bullet \ 1 + \frac{1}{\tan^2 \alpha} = \frac{1}{\sin^2 \alpha}$$

Circunferência trigonométrica



- $P(\cos \alpha, \sin \alpha)$;
- $T(1, \tan \alpha)$;
- $\cos \alpha \in [-1, 1];$
- $\sin \alpha \in [-1, 1]$;
- $\tan \alpha \in \mathbb{R}$.

Relação razões trigonométricas

$$\sin(\pi + \alpha) = -\sin\alpha \qquad \sin(\pi - \alpha) = \sin\alpha \qquad \sin(-\alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha \qquad \cos(\pi - \alpha) = -\cos\alpha \qquad \cos(-\alpha) = \cos\alpha$$

$$\tan(\pi + \alpha) = \tan\alpha \qquad \tan(\pi - \alpha) = -\tan\alpha \qquad \tan(-\alpha) = -\tan\alpha$$

$$\sin(\frac{\pi}{2} + \alpha) = \cos\alpha \qquad \sin(\frac{\pi}{2} - \alpha) = \cos\alpha$$

$$\cos(\frac{\pi}{2} + \alpha) = -\sin\alpha \qquad \cos(\frac{\pi}{2} - \alpha) = \sin\alpha$$

$$\tan(\frac{\pi}{2} + \alpha) = -\frac{1}{\tan\alpha} \qquad \tan(\frac{\pi}{2} - \alpha) = -\cos\alpha$$

$$\sin(\frac{3\pi}{2} + \alpha) = -\cos\alpha \qquad \sin(\frac{3\pi}{2} - \alpha) = -\cos\alpha$$

$$\cos(\frac{3\pi}{2} + \alpha) = \sin\alpha \qquad \cos(\frac{3\pi}{2} - \alpha) = -\sin\alpha$$

$$\tan(\frac{3\pi}{2} + \alpha) = -\frac{1}{\tan\alpha} \qquad \tan(\frac{3\pi}{2} - \alpha) = \frac{1}{\tan\alpha}$$

Função seno

Seja $f(x) = \sin x$, temos então:

- $D_f = \mathbb{R} ; D'_f = [-1, 1].$
- Expressão geral dos zeros: $\sin x = 0 \Leftrightarrow x = k\pi$, $k \in \mathbb{Z}$.
- Expressão geral dos maximizantes: $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$.
- Expressão geral dos minimizantes: $\sin x = -1 \Leftrightarrow x = \frac{3\pi}{2} + 2k\pi, k \in \mathbb{Z}$.
- Frequência: $f = \frac{1}{2\pi}$
- O gráfico da função f_1 definida por $f_1(x) = a + b \sin(c(x d))$, com $a, d \in \mathbb{R}$ e $b, c \in \mathbb{R} \setminus \{0\}$ pode ser obtido a partir do gráfico da função f recorrendo a transformações.

- Paridade: é uma função impar, pois $\forall x \in \mathbb{R}$, $\sin(-x) = -\sin x$.
- Período: O período fundamental da função seno é 2π .

Nota: f é periódica de período P, sendo P > 0, se $\forall x \in D_f$, $x + P \in D_f$ e f(x + P) = f(x)

Ao menor valor positivo, P_0 , do período de uma função períodica chamamos período fundamental ou período positivo mínimo.

Função cosseno

Seja $g(x) = \cos x$, temos então:

- $D_g = \mathbb{R} ; D'_g = [-1, 1].$
- Expressão geral dos zeros: $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.
- Expressão geral dos maximizantes: $\cos x = 1 \Leftrightarrow x = 2k\pi, k \in \mathbb{Z}$.
- Expressão geral dos minimizantes: $\cos x = -1 \Leftrightarrow x = \pi + 2k\pi, k \in \mathbb{Z}$.
- Frequência: $f = \frac{1}{2\pi}$
- O gráfico da função f_1 definida por $f_1(x) = a + b \sin(c(x d))$, com $a, d \in \mathbb{R}$ e $b, c \in \mathbb{R} \setminus \{0\}$ pode ser obtido a partir do gráfico da função f recorrendo a transformações.
- Paridade: é uma função par, pois $\forall x \in \mathbb{R}$, $\cos(-x) = \cos x$.
- Período: O período fundamental da função cosseno é 2π .

Função tangente

Seja $h(x) = \tan x$, temos então:

- $D_h = \mathbb{R} \setminus \{x : x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}; D'_h = \mathbb{R}$.
- Expressão geral dos zeros: $\tan x = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$.
- Frequência: $f = \frac{1}{\pi}$
- O gráfico da função f_1 definida por $f_1(x) = a + b \sin(c(x d))$, com $a, d \in \mathbb{R}$ e $b, c \in \mathbb{R} \setminus \{0\}$ pode ser obtido a partir do gráfico da função f recorrendo a transformações.
- Paridade: é uma função impar, pois $\forall x \in \mathbb{R}$, $\tan(-x) = -\tan x$.
- Período: O período fundamental da função tangente é π .

PRODUTO ESCALAR NO PLANO

Inclinação de uma reta

O menor ângulo que uma reta forma com o semieixo positivo Ox designa-se por inclinação dessa reta.

Se α é a inclinação da reta r, então:

- $\alpha \in [0, 180^{\circ}]$ ou $\alpha \in [0, \pi[;$
- m_r é o declive de uma reta não vertical r, então $\tan \alpha = m_r$.

Nota:

Se $m_r > 0$, então $\alpha = \tan^{-1}(m_r)$; Se $m_r < 0$, então $\alpha = \tan^{-1}(m_r) + 180^\circ$ (em graus) ou $\alpha = \tan^{-1}(m_r) + \pi$ (em radianos); Se $m_r = 0$, então $\alpha = 0$.

Propriedades do produto escalar

$$\vec{u} \cdot \vec{v} = (u_1, u_2) \cdot (v_1, v_2) = u_1 v_1 + u_2 v_2$$

- $\vec{u} \cdot \vec{u} = ||u||^2$
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

Vetores Perpendiculares

$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$

Ângulo de dois vetores

Para \vec{u} e \vec{v} não nulos:

$$\cos\left(\widehat{\vec{u},\vec{v}}\right) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$$

Nota:

- Sendo θ o ângulo formado por \vec{u} e \vec{v} , então:
- Se $\vec{u} \cdot \vec{v} > 0$ então θ é agudo ou nulo;
- Se $\vec{u} \cdot \vec{v} < 0$ então θ é obtuso ou raso;
- Se $\vec{u} \cdot \vec{v} = 0$ então θ é reto.
- Repare que $\theta \in [0,180^{\circ}]$ ou $\theta \in [0,\pi]$.

Ángulo de duas retas

Sejam \vec{r} um vetor diretor da reta r e \vec{s} um vetor diretor da reta s, o ângulo α formado pelas duas retas, pode ser determinado recorrendo à fórmula:

$$\cos \alpha = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \times \|\vec{s}\|}$$

Nota:

- Repare que $\alpha \in [0, 90^{\circ}]$ ou $\theta \in \left[0, \frac{\pi}{2}\right]$.

Relação entre o declive de duas retas perpendiculares

Sejam $r: y = m_r x + b_r$ e $s: y = m_s x + b_s$, então:

$$r \perp s \Leftrightarrow m_r \times m_s = -1$$

PRODUTO ESCALAR NO ESPAÇO

Propriedades do produto escalar

$$\vec{u} \cdot \vec{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3$$

- $\vec{u} \cdot \vec{u} = ||u||^2$
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

Vetores Perpendiculares

$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$

Ângulo de dois vetores

Para \vec{u} e \vec{v} não nulos:

$$\cos\left(\widehat{\vec{u},\vec{v}}\right) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$$

Nota:

- Sendo θ o ângulo formado por \vec{u} e \vec{v} , então:
- Se $\vec{u} \cdot \vec{v} > 0$ então θ é agudo ou nulo;
- Se $\vec{u} \cdot \vec{v} < 0$ então θ é obtuso ou raso;
- Se $\vec{u} \cdot \vec{v} = 0$ então θ é reto.
- Repare que $\theta \in [0, 180^{\circ}]$ ou $\theta \in [0, \pi]$.

Ângulo de duas retas

Sejam \vec{r} um vetor diretor da reta r e \vec{s} um vetor diretor da reta s, o ângulo α formado pelas duas retas, pode ser determinado recorrendo à fórmula:

$$\cos \alpha = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \times \|\vec{s}\|}$$

Nota:

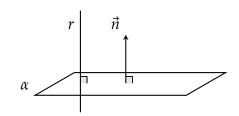
- Repare que $\alpha \in [0,90^{\circ}]$ ou $\theta \in \left[0,\frac{\pi}{2}\right]$.

Equação cartesiana do plano lpha

- $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$, sendo $\vec{n}(a,b,c)$ um vetor normal ao plano $(\perp a \alpha)$ e $P(x_0,y_0,z_0)\in\alpha$.
- ax + by + cz + d = 0, sendo $\vec{u}(a, b, c)$ um vetor normal a α .

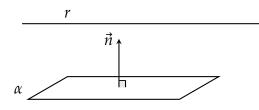
Reta perpendicular a um plano

 $r \perp \alpha \Leftrightarrow \vec{r}$ é colinear com \vec{n}



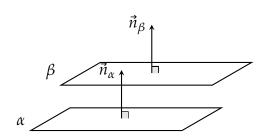
Reta paralela a um plano

$$r /\!//\!/\!\alpha \Leftrightarrow \vec{r} \perp \vec{n}$$



Planos Paralelos

$$\alpha ////\beta \Leftrightarrow \vec{n}_{\alpha} ////\vec{n}_{\beta}$$



Planos Perpendiculares

$$\alpha\perp\beta\Leftrightarrow\vec{n}_\alpha\perp\vec{n}_\beta$$

